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1 INTRODUCTION
There exists a litany of existing systems which can analyze the resource usage of an input program.
These systems lie on a spectrum of expressiveness and automation. Inference-based systems can
automatically generate an upper bound on the resource use of a program, at the cost of generating
less precise analyses of resource usage. Resource-Aware ML (RaML) [Hoffmann et al. 2012], for
instance, can infer polynomial bounds on programs by distributing potential among data structures,
but cannot infer dependent bounds: resource bounds which include program variables or conditional
expressions. Meanwhile, verification-based systems are more expressive but lack automation;
ReSyn [Knoth et al. 2019, 2020], for instance, requires the programmer to provide a resource bound
themselves, but can verify bounds with conditional expressions and program variables as a result.
This article presents automated dependent resource analysis, a set of techniques for inferring

dependent bounds on program resource consumption. Our approach aims to combine the best
of both worlds, introducing new techniques to infer a richer set of resource bounds. Our system
takes as input a cost model for the program and automatically infers a fine-grained upper bound on
resource usage, a bound which can reference program variables and include conditional expressions.

To accomplish this, we build on ReSyn’s liquid resource types [Knoth et al. 2020], which integrate
resource annotations with liquid types [Vazou et al. 2013], allowing ReSyn to use refinements to
reason about resource consumption by adding potential annotations. We augment ReSyn with
liquid resource type inference, synthesizing top-level resource annotations and optimizing these
annotations to the find a minimal fine-grained upper bound on a program’s resource use.

2 A MOTIVATING EXAMPLE: RANGE
We present the range function as a motivating example for our work. An implementation of
range, annotated with the costs of individual operations via ticks, is included in fig. 1. This function
produces a list of numbers between given minimum andmaximum values, inclusive, and its resource
use is defined as the length of the output list (i.e. the difference between the input maximum and
minimum); in particular, the resource use of this function is dependent on the value of its arguments.
Because of this, this example would be beyond the scope of existing resource inference systems.

range = _lo. _hi. if lo ≥hi then Nil else Cons lo (tick 1 (range (lo + 1) hi))

Fig. 1. The range function

3 EXISTINGWORK: LIQUID RESOURCE TYPES
To infer the resource use of examples like range, we build upon ReSyn and its liquid resource
type system. ReSyn combines liquid types with a resource analysis system that revolves around
annotating types with a numeric quantity called potential. For instance, a value of type Int1 carries
one unit of potential, and a value of type List Int1 carries a unit of potential for each element in
the list. ReSyn is also capable of distributing potential non-uniformly throughout a data structure
via abstract potentials, allowing programmers to express polynomial or exponential resource
use. And because ReSyn’s type system integrates refinement types and resource bounds, these
potential annotations can also contain conditional expressions and program variables. These units
of potential can be spent on operations that might occur during evaluation. These annotations on
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resource distribution and use are eventually reduced to a set of conditional linear arithmetic (CLIA)
constraints, dispatched to ReSyn’s existing constraint-solving infrastructure.

3.1 Range in ReSyn
As a result of having these features, ReSyn is able to verify the correct upper resource bound on
range’s resource use. The liquid resource type for the range function is provided below:

range :: 𝑙𝑜 : Int → ℎ𝑖 : { Inta−𝑙𝑜 | a ≥ 𝑙𝑜 } → List Int

In this signature, we require that hi must be greater than or equal to the value of lo, and that hi must
contain hi − lo units of potential, which can be used to pay off resource use during execution of
the function. (a in the type of hi represents the value of hi itself.) Note that this resource annotation
is dependent: the resource use of range depends on the values of lo and hi.
The challenge in this case is to extend ReSyn to be able to infer these liquid resource types. In

the spirit of RaML, this boils down to finding the minimum potential needed to account for all the
resource use in a program; this is equivalent to finding minimal top-level resource annotations.
Thus, our approach must be able to synthesize new resource annotations, some of which could
contain conditional expressions and program variables, and optimize these synthesized resource
annotations. Together, these constitute an inference system which could automatically infer the
most precise resource bounds ReSyn can currently verify on examples like range.
This is less trivial than it seems. For one, there are many possible resource expressions, and

we need a strategy for efficiently generating resource expressions based on the structure of the
given program. Additionally, there is no clear formal way of ordering resource expressions. For
instance, out of the expressions if a < b then 1 else 0 and if a < b then (if c < d then 1

else 0) else 0, how can we tell which is “smaller?” We present two extensions to ReSyn in order
to overcome these hurdles, allowing it to infer the resource use of a much wider array of programs.

4 ADDING A DEPENDENT OPTIMIZATION LOOP
In order to verify that a resource bound is valid for a given cost model of a program, ReSyn must
ensure that the provided potential can be distributed to all of the operations that need it. ReSyn
does this by first introducing resource unknowns: stand-ins for resource expressions which will be
synthesized during the constraint solving process. ReSyn then generates constraints over these
unknowns, corresponding to using and splitting resources across the program.
However, this process requires that we already have a top-level resource annotation for our

program. Additionally, the resource constraint solver only checks for that there is some valid
assignment for these resource unknowns under a set of resource constraints; no machinery exists
to optimize these resource unknowns. Utilizing existing CLIA solvers would also be inadequate, as
they are too slow to find valuations for these resource unknowns in a reasonable amount of time,
since we’re quantifying over all possible inputs, and don’t support optimization.
Our first insight is that, given a set of dependent resource expressions, we can create a simple

optimization loop which requires that on each iteration, no resource unknown has a larger value
than it did previously for all inputs, and at least one resource unknown has a smaller value for some
input. We dub this technique dependent optimization. Specifically, before starting optimization, we
introduce top-level unknowns as resource annotations that we will solve for during optimization.
For instance, with range, we introduce four top-level resource unknowns, I1 through I4:

range :: 𝑙𝑜 : Int𝐼1 → ℎ𝑖 : { Int𝐼2 | a ≥ 𝑙𝑜 } → (List IntI3)𝐼4

On each iteration of the optimization loop, we first run ReSyn’s resource constraint solver to find a
valuation for our resource unknowns before repeatedly attempting to find a better resource bound;
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“better” means that one of the resource unknowns gets smaller for at least one set of program
variable values, and none of the resource unknowns get larger for all program variable values.
When this fails, we know that we have the tightest upper bound.

For range, there is one recursive call for each difference between hi and lo. Thus, the main
resource constraint of interest is that there’s enough potential to pay for each of these calls:
𝐼1 + 𝐼2 ≥ ℎ𝑖 − 𝑙𝑜 . In the case that the resource solver initially finds a non-optimal assignment for
the resource unknowns which satisfies this constraint (e.g. 𝐼2 = 2a − 𝑙𝑜 , 𝐼1 = 𝐼3 = 𝐼4 = 0), on the
next iteration of the optimization loop, we would add the constraint that for all inputs, none of the
unknowns got worse, and there exists an input where one or more unknowns improve. For brevity,
we only include the added optimization constraints on I1 and I2:
((∀a ∈ Z. 𝐼1 ≤ 0) ∧ (∀a, 𝑙𝑜 ∈ Z×Z. 𝐼2 ≤ 2a − 𝑙𝑜)) ∧ (∃a ∈ Z. 𝐼1 < 0∨∃a, 𝑙𝑜 ∈ Z×Z. 𝐼2 < 2a − 𝑙𝑜)
This would eventually lead the resource solver to find the optimal assignment for 𝐼1: 𝐼1 = a − 𝑙𝑜 .

We have implemented a prototype of the dependent optimization loop within ReSyn which can
infer the resource use of many existing ReSyn verification tests, including the asymptotic bounds of
several sorting algorithms and several tests translated from RaML. Our prototype can also infer the
resource use of the above range example, which wasn’t possible with previous inference systems.

5 FUTUREWORK: GENERATING CONDITIONAL RESOURCE EXPRESSIONS
While ReSyn can synthesize resource polynomials, it cannot synthesize conditional expressions,
and for good reason. Conditional expressions can be arbitrarily nested, and each can contain one
of many possible boolean expressions in their guards, so naive enumeration would be extremely
inefficient. This is one reason why existing CLIA solvers are impractically slow for this use case.
In order to address this, our second insight is that the conditional structure of our generated

resource bounds should mirror the conditional structure of the corresponding program. Thus,
any conditional expressions in our generated resource expressions should have the same level of
nesting and should have similar guards as the conditionals in our program. We propose a future
extension to our dependent optimization system, dubbed conditional structure inference. When
generating resource expressions, we first extract the general conditional structures of the functions
in the program. We then use these conditional structures as templates for our generated resource
expressions, substituting in in-scope variables as needed and generating fresh resource variables to
replace the leaves of these conditional expressions. With these two extensions, our approach can
infer a vast majority of the bounds that ReSyn can currently only verify.
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